A quasi-Bayesian perspective to online clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian topic model approaches to online and time-dependent clustering

Clustering algorithms strive to organize data into meaningful groups in an unsupervised fashion. For some datasets, these algorithms can provide important insights into the structure of the data and the relationships between the constituent items. Clustering analysis is applied in numerous fields, e.g., biology, economics, and computer vision. If the structure of the data changes over time, we ...

متن کامل

Bayesian perspective over time

Thomas Bayes, the founder of Bayesian vision, entered the University of Edinburgh in 1719 to study logic and theology. Returning in 1722, he worked with his father in a small church. He also was a mathematician and in 1740 he made a novel discovery which he never published, but his friend Richard Price found it in his notes after his death in 1761, reedited it and published it. But until L...

متن کامل

Online Video Segmentation by Bayesian Split-Merge Clustering

We present an online video segmentation algorithm based on a novel nonparametric Bayesian clustering method called Bayesian Split-Merge Clustering (BSMC). BSMC can efficiently cluster dynamically changing data through split and merge processes at each time step, where the decision for splitting and merging is made by approximate posterior distributions over partitions with Dirichlet Process (DP...

متن کامل

A Bayesian Approach to Two-Mode Clustering∗

We develop a new Bayesian approach to estimate the parameters of a latent-class model for the joint clustering of both modes of two-mode data matrices. Posterior results are obtained using a Gibbs sampler with data augmentation. Our Bayesian approach has three advantages over existing methods. First, we are able to do statistical inference on the model parameters, which would not be possible us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2018

ISSN: 1935-7524

DOI: 10.1214/18-ejs1479